
Roxton Baker
author of TRAKCESS

presents:

1RE
l\LTERNMl'E

S URCE

STOPPER
T"" BASIC Bttakpolnt<T

(<') 1981 by Ru-. Bek""
Bo• 8272, APO S.tt Fnnc:i1c,o 96555

This documentation assumes that you have STOPPER in a loadahle form
for your system (tape or disk), To transfer STOPPER fro111 tape to
disk, Ree the instructions near the em:!•

t hope that you find STOPPER to tie a genuinely useful proj!'ram. A
great deal of tt111e has ,one into its development. If you have
problems, or suggestions for improvement, please write.

1'7ARTING STOPPER

Note that there are two steps to both the disk a.nd tape loa.rling
procedures!

Di,t. Sy1tema:

1) From DOS READY, type:

STOPPER <Enter>

This will cause STOPPER to determine the current setttn, of memory
size (from location 4049H) and locate Hself just under that. The
value at 4049H is then reset lower to pMtect STOPPER. At,out 3, lK of
high-memory RAM space is required by STOPPER,

This method of loa~ing STOPPER will work with other high-memory
utilities, provided that you load them first and that they set memory
size (at 40491l) to protect themselves. There is a way ar::;und these
two requirements. You 111ay force STOPPER to load below any hifh memory
location r.mmm,n by typing:

STOPPER lllfflll1IIIIIJ <Enter>

So if tor example you have some other utility program for which you
wou J rt norma 11 y set 111emory size at 60000, you wou lrl use 'STOPPER 60000 •
instead. Another time you mitht use this entry method is if you have
entered and left Basic, and then tried to reload STOPPER. In this
case STOPPER may detect its own previous memory size setting at 4049ff,
and load below that - which of course is not necessary. The solution
1s to use 'STOPPER 65535 <Enter>'. This forces STOPPER to load at the
top of memory.

In the process of relocating itself, STOPPER briefly resides in the
area 5500R-6500R, and will overwrite anything there. This should not
t,e a problem with a disk system.

2) •~en STOPPER has been relocated, the program logo will he
displayed, Just helow that will he the program entry point (ehown as
"/eeeee"). Go into Disk Basic without settin,: memory size. It will
automatically be set just below STOPPER's entry point. At the Basic
READY prompt, type:

SYSTEM <Enter> /eeeee <Enter>

to activate STOPPER (you should receive the response "STOPPER <ON>"),
Typing it again will deactivate STOPPER, as will STOPPER'S 'Q'
command. If you forget it, this "eeeee" value may be found unc:ter
Basic hy typing:

PRINT PEEK(16457) + 256 • PEEK(l6458) + 2

Tape Sy1lem1:

1) Prom Basic READY, use the SYSTEM command to load the machine
language tile STOPPR. When the•? prompt reappears, type '/<Enter>'.
This will cause STOPPER to determine the current setting of memory
size (from location 4081H} and locate itself just under that. The
value at 4081H 1a then reset lower to protect STOPPER. This means
that you can use STOPPER with other high-memory utilities, provided
that you load them first, and that either they set their own memory
size or you eet it tor them. You may force STOPPER to load into the
very top of memory by turning power oft and then oo before loading it.

While relocating itself STOPPER briefly resides in the area
5500H-6500H, and will overwrite anything there. It will not affect
code below that, however. Thus you may load STOPPER even if you
already have a short (less than 4K) Basic program in 111emory. It is
best, though, to load and initialize STOPPER before loading or
creating any Basic text. About 3.lK of hivh-emory RAM space is
required by STOPPER.

2) When STOPPER has relocated itself, the program logo will be
displayed. Just below that will be the program entry point (shown as
"/eeeee"). Jfow type:

SYSTEM <Enter> /eeeee <Enter>

to activate STOPPER (you should receive the response "STOPPER <ON>"}.
Typing it again will deactivate STOPPER, as will STOPPER's 'Q'
coanand. If you forget it, this "eeeee" value may be found hy typiny:

PRINT PEEK(16561) + 256 * PEEK(l6562} + 4

STOPPER'S COMMANDS

With STOPPER active, you have a number of commands availahle to t,e
entered at Basie's READY prompt. You must press <F.nter> after any
command. These commands include:

<nnnnn

<nnnnn,ceccc

<nnnnn,

<,ccccc

<variahle•value

<variable*value

<

<,

Meaning

Set a breakpoint at line nnnnn, to
he taken the first time the line
is hit. The program will halt
BEPORE any of the line is executed.

Set a breakpoint in line nnnnn, to
be taken when it is hit ccccc
times. See below tor more infor
mation on these numbers.

Set a breakpoint at line nnnnn, keep
inv the previous hit count.

Set a breakpoint at the same line as
was previously used, but change the
hit count to this new ccccc value.

Set a breakpoint to toe taken when the
specified variable becomes equal to
the specified value.

Set a breakpoint to be taken when the
specified variable becomes unequal
to the specified value.

Restore previous breakpoint exactly,
whether a line numher or a variahle
value hreakpoint.

Restore previous line breakpoint, hut
with a hit count of one.

B

N

<variahle

<•value

M

F

?

C

X

+

>

z

p

R

T

y

u

0

G

L

Htt

If a variahle hreakpoint has prev
iously been defined, restore it
exactly.

If a line number breakpoint has prev
iously been defined, restore it
exactly. Otherwise, activate the
default line number breakpoint.

Define this variahle to he the one of
interest. This will he the var
iable whose value is subsequently
displayed by the '?' command or
is directed as a trace to screen
or printer.

Set a breakpoint to be taken when the
last specified variahle (if any}
becomes equal (or, on "*", unequal)
to the specified value.

Show statue of current breakpoint.

Fix (clear) any active breakpoint.

Show current value of variable of
interest (if any).

Delay 1 aecond, then OONTinue.

Sarrte as 'C', but ll'O into "hold"
immediately, awaiting keyboard
input to proceed.

Execute next statement.

Execute to t-evtnninv of next line.

Same as '>', but go into "hold"
immediately, awaiting keyhoard
input to proceed.

Display current line from current
statement to end. This important
co!llffland is also used to locate
errors in a long line, as descrihed
below.

"RUN°.

TRON (line numher is displayed in
lower rivht corner).

TRON to printer in one column.

TRON to printer in eight columns.
This cannot be used simultaneously
with '0'.

Trace variable value to screen. It
is displayed on the bottom line.

Trace variable value to printer.
This cannot t>e used simultaneously
with •u•.

TROFF {all traces).

"LIST".

Set tolerance on single and douhle

ff

J

Q

precision variable value compari
sons. Range ot 'tt' ia 0-15.

Display tolerance on SP and DP com
parisons.

Reinitialize STOPPER completely.

Turn STOPPER ott.

In addition to these direct commands, there are several keys active
during the execution of your program. These are descrihed below.

BltE4kPOINTS

The most important co111111and is'<', to set a breakpoint. This command
allows you to stop at selected points and times in a Basic program
without having to edit the pro~ra~ (and therehy lose all of your
variables). Briefly, you may set a breakpoint to he taken when a
certain line numher has been reached, or when any variahle has hecome
equal or unequal to a specifierl value. Further details on these two
distinct types of breakpoints are provided below. A~ain, note that
all eol!llllands are entered at Basie's READY prompt, and all commanrls
must be followed hy <Enter>. Any active breakpoint may he turned off
by 'P'. Any inactive breakpoint may be reactivated by'<'.

UNE NUMBER BREAKPOINTS

A line number breakpoint is set by the cotn111and '<nnnnn,ccccc', or a
variation on it. The numbers nnnnn and ceccc are decimal integers
with a maximu~ value of 65529. The lower limit on nnnnn is O. The
lower limit on the "bit count" ccccc is l, Leading zeros need not t,e
entered. When such a breakpoint has been set, and a Basic program is
executing, STOPPER will halt the prorram Just before the specified
line (nnnnn) is executed for the specified (ccccc) time. STOPPER
initializes with nnnnn • O, ccccc•l. This is the default line number
breakpoint. The 'M' command may be used to see how many "hits" remain
to be taken on a line number breakpoint.

As an example, suppose that in a program you wish to break Just before
line 210 is executed, You would enter:

<210

and you would then RUN or CONTtnue the program. If you wish instead
to wait until line 210 is about to be executed for the fifth time, you
would enter:

(210,5

When STOPPER hits a line numher breakpoint, it restores the breakpoint
hit count to its original value, but it leaves the breakpoint OFF.
(You may easily reactivate any breakpoint with '<'). Then STOPPER
freezes the pro11:ram as if CLEAR had t>een pressed. The "*" hold
indicator will appear in the lower right corner. Now, if you press
BRP.AK, STOPPER wil 1 display the number of the 11.ne last executed
followed by the number of the line ahout to be executed (the
hreakpo1nt line). This shows you Just how the program arrived at the
breakpoint, and can he quite useful in troubleshooting.

Line numher breakpoints will not work on lines Jumped to hy an ON
ERROR GOTO statement, because the ROM allows no opportunity to
intercept such a jump. The best you can do here is to break on the
second line (if any) of the error handling code. In this case,
STOPPER will still show you which line caused the error.

VARIABLE V AWE BREAKPOINTS

A variable value breakpoint is set by the connand '<variahle•value• or
a variation on it, You MY specify any type of variable (integer.
single or double precision, or strin~) and the variable NY he
subscripted. The only limitation is that the variable's name must be
no more than fourteen characters long, You 11111.y specify any reasonable
'break' value for this variable, aa ton~ aa the value is no more tban
23 characters Ion,. You lll'USt take care to have a decimal point in any
floating point value, and double precision (DP) nu1Dbers must either
have more than seven dirits or 11111st end •1th the 'D' exponent
identifier, Also, you ,nay specify that you wish the program to halt
when the named variable becomes unequal to the given value, Por this,
eimply uee "•" instead of "•"• Example varial'tle value breakpoints
are;

<X!•21,
<L'J.•724
<VK#•43.17833069212
<WP$(8)•"BAO MESSAGE"
<QQ$*"GOOD MESSAGE"
<NS!(7,6)-0,03274
<J2#(4,4)•+29,ll4500

(note decimal point for SP)
(note no decimal Point for integer}

(note negative value)
(note optional"+")

It is always safest to use%,!,#, or t to specify the variable type
explicitly, as was done in these examples, Makinll' a practice of this
will avoid the possibility of having to reenter the breakpoint spec,
as well as the chance of settinr a breakpoint on a nonexistent
variable, As shown in the command list earlier, you l!lllY chanl!'e the
hreak value on a previously specified variable by enterinll' only the
value. Thus, if TMT$(6,l,9) had tieen the most recent variable
specified, you could modify its break value with:

<•"BREAK HERE fNSTEAD"
or with:

<•"BOUND 'l'O BEi"

When STOPPER hits a variable value breakpoint, it turns the breakpoint
OFF. Then it freezes the program juet as if CLEAR had been pressed.
The "•" hold indicator will appear in the lower right corner. Now, if
you press BREAK, STOPPER will print out the numher of the line that
caused the variable value to chanr.e, If the line contains many
state111ents, you may display exactly the one that caused the break t,y
using the •p• co11111and, as described below.

Variable breakpoints require a bit of care in their use. First
consider the problem of breaking when Al heco111es unequal to 12, hy
entering the co1111J1and • <Al•12 •. Obviously, when the Urst statel'lent of
the program is about to be executed, Al will be O - eaueinv a break.
To avoid this you 111Ust not activate the breakpoint until the program
has set A% to 12, The simplest way to accomplish this is to first set
a breakpoint at Al•l2. When this is hit, Break and type '<•12' to
reset the breakpoint for the inequality. Then use •c• to continue.

Another place to be careful is in the use of suhecripted variahles.
If the nu1Dher of suhscripts is three or less, and if each of the
subscripts you specify is 10 or Iese, then it is poss1hle to set up
the hreakpoint before running the program. The only remaining prohlem
will he if, somewhere in the program, the array in question is used in
a DIM statement. This will cause a "Redimene1oned Array" error when
hit with the breakpoint active. The solution here is to set a line
hreakpoint right after the DIM stateinent; when the "•" hold indicator
appears, BREAK and then type 'B' to reactivate the variable break, and
'C' to continue. Incidentally, you will also get this "Redimensioned
Array error if you are tracing such a variable when the DIM statement
is hit.

If the number of subscripts is more than three, or if any of t~em
exceed 10, you will have to wait until the array has heen DIMensioned
by the program before specifying your variable break, Use a line
n11111ber breakpoint to accomplish this,

Finally there is the question of exactness in single and double
precision variable value comparisons (integers and strings are always

compared exactly). When you say "break if A!•l.234567", do you mean
EXACTLY 1.234567, or close to it? If the requirement is for exact
equality, then use the 'fftt' command (in this case 'HO') to set a zero
tolerance (STOPPER initializes with tolerance tt•4). However, if the
value you are concerned with has heen calculated in the program -
which is the most likely case - rather than having been read in as a
data item or stated explicitly, then an "exact" comparison 1!111.Y fail,
due to round-off errors in the machine arithmetic. What you really
want to do is break when A! is approximately 1.234567. Since there is
no way for STOPPER to know beforehand just how loose this
approximation may be, the 'Htt' command will let you specify the
required tolerance on the breakpoint comparison, The syntax of this
command was shown in the co111111and list. The tolerance value 'tt' may
range from O throur.h 15, The effect of this value is to cause STOPPER
to ignore the last tt ~its in its comparisons of SP and DP varia~le
values. Ignoring zero bits 111eans that the values 111t1st match exactly.
Ignoring fifteen bite means that they may differ ~Ya great deal (the
actual effect varies hetween SP and DP numbers). You may never need
the 'Htt• coD111and, and should only be concerned with it if you set an
SP or DP breakpoint that should have been taken, but wasn't, or if the
program ia breakinv on values close to, but not quite, the one you
wanted, If you change the tolerance 'tt' 1t will remain at its new
value until STOPPER is reinitialized. You may use the 'ff' com,and to
display the current value of 'tt', and it will be shown whenever the
status of an SP or DP breakpoint is displayed,

THE •r COMMAND

Whenever you press BREAK while your program is running, STOPPER will
print out the current line numher, The 'P' command may then be used
to show you exactly where :l.n the line you stopped. Normally, 'P' will
display the remainder of the current line, beginning with the next
statement to be executed. However, 1f the program has .1ust hit a
variahle value breakpoint or if it has halted on an error, then the
'P' collllll8.nd wtll display THE STATEMENT THAT CAUSED THE HALT (followed
hy the rest of the line). This will be the statement LAST executed,
not the one next to be executed, This allows you to instantly
deter111lne, even in long, mul'tiple-staterient lines, exactly where an
error occurred or a value chanyed,

DURING PROGIUIII EXECUTION: CLEAR, 1, >

When your program is running you may slow it or single-step it using
the CLEAR key (or shift/CLEAR, if your DOS does not prevent :tt).
Pressing and releasing CLEAR will freeze the program at the current
statelllE!nt. To confirm this action, the ""'" hoJti indieator w11 l appear
in the bottom right corner of the screen. Pressing and releasiny.
CLEAR again will allow the next statement to be executed, Holrting
CLEAR down will allow the provram to continue at about three
statements (not lines!) per second. You can tell when each state111ent
executes hy the flicker of the ""'" indicator. Pressing <Enter) or
most any other key will start the program running at full speed again.

Whenever the"•" hold indicator is showing, you may press '<' to reset
the most recent breakpoint. This is generally just a convenience, but
it is useful when you do not wish to disturb the video display.
Consider the case where a breakpoint is to be enabled only after a
certain point in the program has been reached. Define the breakpoint,
disable it using 'F', and RUN the program. At the point of interest,
press CLEAR to stop the prop:rar1 anrl display the"•" hold inrticator.
Then presR '< • and th is same "<" symbol wil 1 appear in place of the
""'". This tells you that the last breakpoint has been reset. It is
exactly the same as using the '<' co111111and at the READY prompt.

If a variable has ooen defined via '<variable', then you MB.Y, while
your program is running, press '?' to observe the value of the
variable, This value will appear on the bottom line, just as if the
'I' key were active. The value will remain, with program execution
paused, as lony as '?' is held down. If the total length of the
variable name and value exceeds 22 characters, it will be truncated

for display. It no variable has been named, the '?' key will just
pause the program, without affecting the display. Since pressing'?'
requires the use of the shift key, any tracing to printer will tie
temporarily disabled (see below),

Pressing BREAK during program execution will cause the program to
break and STOPPER to print out the current line number,

SINGLE STEPPING A PROGRAM

From any point at which you have pressed BREAK you lllllY continue via
•c•, •x•, '+', '>', or 'Z', as listed earlier. The latter three
commands will single-step through your program, stopping completely
between each statement or line. These commands differ from CLEAR key
stepping in that they force the program to break, rather than just
freezing its execution. Note that the '+' and '>' commands may be
entered conveniently by holding down the left shift key while preaain~
the command key and then <Enter> on the right.

While stepping in this manner, whenever STOPPER reaches a line end (as
distinct from a statement end) it will print out the next line to be
executed, If a variable value breakpoint is active, and you step
through it using'>', it will be taken as if it had been hit at full
speed; that ts, the program will freeze with the "*" bold indicator
on. This will not occur with line number breakpoints, or with any
statement stepping using'+'.

Another point to remember in the use of'>' is that stepping will
continue until the start of the next line IN PROGRAM PLOW ORDER. Thus
if you use '>' to step through Line 10 in this example:

10 GOSUB 30 : GOTO 100

the program will halt next at Line 30.

Statements using Basie's INKEY$ command will require some care when
single-stepping. In order to handle them, the 'X' and 'Z' co111111ands
have been provided. The •x• command is identical to 'C', except that
you are immediately put into a "hold" state with the "•" indicator
showing - just as if you had hit a breakpoint or had pressed CLEAR.
Similarly, the 'Z' key is identical to'>', except that here too you
immediately enter the "bold" state.

Thus if you wished to step through the following code, and later watch
what happens when '2' is the INKEY$ value, you might use '<110' to
break cleanly at a recognizable place:

100 PRINT"ENTER NUMBER OF TORPEDOS!lll"
110 I$•INKEY$ IF I$•"" THEN 110
120 T-VAL{l$): GOSUB 2100

etc.

(It is an exclusive and valuable feature of STOPPER to ignore all
misspellings in Star Trek programs,)

Next you will want to input a value into the INKEY$ loop. The command
'+' will step throur,h the INKEY$ statement, but will not input a value
to it, Therefore you would instead use 'Z' which, after you press
<Enter>, will put the system into "hold" awai tinp: further keyboard
entry. The"•" hold indicator will appear to confirm this, Then you
would press '2', which is how many "torpedos" you wanted to fire, Or
pbazers". Line 110 will now he executet1 in full, and the program

will stop again at line 120. You 1'111.Y now continue to single-step via
'+' or '>'. Had you wished to continue nor111al execution after
pressing '2', you could in this case have used •x• rather than •z•.

Long lines with FOR-NEXT loops in them can cause problems tor both
breakpointing and single-stepping. Consider this line, where we
assume that N bas been defined as an integer:

100 POR N•l TO 50: NEXT N: X•SIN(V) : etc.

You may want to break on the X•SIN(V) statement, hut can't because it
doesn't have a line numher. And it is not practical to step (with
'+'} throu~h the fifty FOR-NEXT loops that precede this statement.
One solution would be to set a line breakpoint at 100 with '<100'.
When it's hit, step into the first execution of the POR-NEXT loop with
'+'. Now BREAK, set a breakpoint at N•51 with '<N$•51', and continue
with 'C'. At the break you will be positioned just before X•SIN(V),
as desired.

TRACE FACILITIES

STOPPER provides some enhancements to Basie's program trace
capability. You ma.y now trace line numbers or variahle values, and
you may direct either or both traces to screen or printer. The T, Y,
U, I, O, and G commands are used for this, as mentioned in the command
list above. 'T' is Just like TRON, except that the line numbers are
shown in the hottom right-hand corner of the screen. •y• sends these
numbers to the printer, in one column. If you want a more compact
printout, perhaps for a long trace, 'U' causes a line number printout
in eight columns. If a variable has been defined via '<variahle', you
may direct a continual trace of its value to the rottom line of the
screen (with 'I') or to the printer (with '0'). This screen display
will be limited to 22 characters total. The printer output will
comprise the full name, and up to 24 characters of the variahle's
value. Note that the •o• and •u• commands may not he used
simultaneously. Also, you should not use 'Y', •u•, or '0' if you
don't have a printer! To maintain compatihility with the widest
possible variety of printers, some ,of which do not provide a "ready"
signal, STOPPER does not cheek for printer availahility. Just as with
an LLIST command, your system will hang if you use these commands
without a printer.

Sometimes, especially within delay loops, you will want to temporarily
<lisahle al 1 printer tracing. This riay be done hy pressinir SHIFT.
When you release SHIFT, any printer tracin, will resume. This key was
chosen for convenience; obviously, you must press SHIFT to use the '?'
f"nctlon during execution, meaning that you will hriefly lose any
printer traces. This shoulrl not he a prohlem.

The 'G' command clears all traces.

STOPPER AND SPEED

Whenever STOPPER is ON, it will affect to some degree the speed of
your program. If no hreakpoint is active, the slowdown is ahout 5%.
If a line numher breakpoint is set, the slowdown increases to ahout
10%. Variahle value breakpoints will consume more time, especially if
the current value of the variable is close to the specified break
value. Figure on a 25$ slowdown, roughly, except in the case of
double precision. DP math is so slow to be~in with that the
additional delay due to STOPPER is not percept1hle. If you are
directing a trace of variahle value to the screen (the 'I' command),
an overall slowdown of ahout 50J will result. Of course, if you
direct any trace to your printer ('Y', '0', or '0' eo111J11ands), program
execution will he reduced to printer speed.

MISCELLANEOUS

Some of the commands provi~ed {such as •c•, 'R', and 'L'} are for
convenience only, and are not really important to the use of STOPPER.
They simply invoke their associated Basie functions.

STOPPER will respond to invalid entries or impossihle requests with
the "** NO GOOD! ••" message.

The commands'<•' and '<*' are not valid unless followed by a value.

Whenever NEW, LOAD, or CLOAD is entered, STOPPER is reinitialized -
just as if the command 'J' bad been used.

STOPPER talks to the printer via the standard DCB. Any printer that
works with Basic should work with STOPPER.

If you press BREAK while waiting at an INPUT statement, STOPPER will
think that the program halted on an error. This means that steppinr
via '+' and '>' will not be allowed.

For those of you who wish to create custom copies of STOPPER once it
has been relocated: the Start address is the same as the 'eeeee'
Entry address mentioned earlier. The Stop address will vary with the
version of STOPPER that you have, but may always be determined in this
way: load STOPPER at the very top of memory, and subtract the Entry
address that results from 65536. This will give you STOPPER's total
lenJth, including all workspaces, once relocated. Add this to the
current Start address to get the current Stop address.

STOPPER AND THE SYSTEM

Because it does not patch into the keyboard DCB, STOPPER will not
interfere with standard keyboard utilities. And it should be
compatible with any DOS. I have found that under DOSPLUS Basic, the
TRON single-stepping feature of that Basic will not work when STOPPER
is on. It will work if you turn STOPPER off. STOPPER's co111111and keys
have been carefully chosen to avoid conflict with this and other new
DOSs. That is why so nm.ny of these commands bad to he shifted keys.
Remember that if you are entering a shifted key command, you do not
need to release SHIFT before pressing ENTER.

STOPPER appears to be compatihle with Pia.DY of the aftermarket Basic
enhancement packages, but this cannot be guaranteed. I would
appreciate hearing of your experiences with STOPPER in combination
with any other products.

TRANSFERRING STOPPER TO DISK

If you received STOPPER on tape, and wish to run it froM a disk
system, you must create a /CMD file on disk. You may do this directly
using the TRSDOS standard TAPEDISK utility, Apparat's LMOFFSET,
Misosys' CMDFILE, Acorn's FLEXL, or any of a number of monitor
programs. On tape, STOPPER is a plain-vanilla SYSTEM file with
filename 'STOPPR'. One way to create a /CMD file is to use TAPEDISK
as follows:

From DOS READY, execute TAPEDISK. Make sure that drive O has at least
4 grans of tree space on its disk. At the Tapedisk '?' prompt, enter
•c• to start loading the tape. When this is complete, enter:

F STOPPER/ClfD:O 5500 6500 5500

Note the required blanks following 'F' and the filespec!

CREDITS

I could not have begun writing this program without the guidance of
David Cornell's excellent article on Label Basic (80-Micro, Dec. 1980,
ppl60-184). I would have Ileen unable to finish without continual
reference to James Farvour's superb book "Microsoft Basic Decoded".
Bruce Hansen's powerful TASMON monitor was used extensively in the
program debugging, and STOPPER is relocatable thanks to Jack Decker's
articles on that subject (TAB Issue Nos. 6 and 10). All programminv
was done under Misosys' EDAS Editor Assembler, an indispensihle tool
for large files. Thanks to all these people.

STOPPER
The BASIC Breakpointer

by Roxton Baker, author of "TRAKCESS"

Now: debug your BASIC programs with ease. NO MORE editing
STOP statements in and out, and NO MORE losing your variables!
NO MORE wondering how a variable got changed, or where in the
line an error occurred. STOPPER will save you hours of mental
frustration by adding commands like these to BASIC:

SET BREAKPOINTS. Specify which line number and how many
times it should he executed before breaking.

RESTORE BREAKPOINTS. Restore previous breakpoints with
the same parameters, or specify new hit counts.

DEFINE VARIABLES OF INTEREST. Specify certain variables
whose value will be displayed by the? command. Also permits tra
cing to screen or printer.

SHOW STATUS of breakpoints.

CLEAR active breakpoints.

SLOW STEP or SINGLE STEP with spacebar.

TRON to printer in one or eight columns.

\nd there's much more! STOPPER is the most powerful BASIC
programming tool available. Completely reloc·atable; requires just
:J.l K of memory. Works under Level II BASIC or Disk BASIC.

	00a.pdf
	00b.pdf
	01.pdf
	02.pdf
	03.pdf
	03b.pdf
	04.pdf
	05.pdf
	05b.pdf
	06.pdf
	06b.pdf
	07.pdf
	08.pdf
	09.pdf

